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UK 

The paper considers two existing theories for the flexural strength of steel fibre-reinforced 
cement composites, which are based on the post-cracking strength concept and on the rule of 
mixtures, respectively. It is shown that the former theory has serious limitations because of the 
omission of the matrix strength contribution to the ultimate composite strength. The rule of 
mixtures is strictly valid for composites under a direct tensile state of stress and its extension 
to the flexural state of stress has not been theoretically verified. An expression for the flexural 
strength of steel fibre-reinforced cement composites has been derived, based on an assumed 
stress block and fundamental principles of flexural mechanics. The derived expression for 
flexural strength is shown to be valid to the experimental results of this investigation and to 
the flexural strength data available from previous research. In the experimental part of this 
investigation, the vf(I/d) ratio of fibres in a wide range of cement matrices was kept constant. 
Variations in composite strength were achieved by different mix proportions of the matrix and 
by long-term curing both under marine exposure and under laboratory curing. In the experi- 
mental results from previous research, however, changes in composite strength were caused 
by different vf(I/d) ratios of fibres. 

1. Introduct ion 
The mechanics of fibre reinforcement of brittle matrices 
in tension has been dealt with in detail by Aveston 
et al. [1, 2]. Such composites are characterized by 
three distinct modes of tensile failure. (a) The com- 
posite is "matrix controlled" and upon cracking of the 
brittle matrix, fibres are unable to sustain the trans- 
ferred stress. Consequently, composite failure is 
instantaneous. This type of composite has little practi- 
cal significance. (b) The composite is still "matrix 
controlled" but carries a decreasing load after matrix 
cracking as the fibres pull out from the cracked sur- 
face, final failure being by a single fracture. This type 
of failure is typical of some cement matrices reinforced 
with short, randomly orientated steel or organic fibres 
at relatively small volumes. (c) The composite is "fibre 
controlled" and after cracking of the brittle matrix, 
the fibres continue to carry an increasing tensile stress 
resulting in multiple cracking of the matrix. This 
behaviour is characteristic of cements reinforced with 
relatively large volume fractions of continuous fibres. 

The transition from a single to multiple fracture of 
the matrix can be schematically represented as shown 
in Fig. 1. Line XY in Fig. 1 is valid when the com- 
posite is "matrix controlled" and line PQ repre- 
sents "fibre controlled" composites in which fibres 
sustain increasing stress after matrix cracking until 
either their ultimate tensile stress is reached or fibre- 
matrix interfacial bond failure occurs. For brittle 
matrix composites, line XY is valid up to the critical 
volume fraction, vcr~ t, beyond which line PQ becomes 
valid. 
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2. Limitat ions of existing theories 
It is now well established that the flexural load 
sustained by a concrete beam can be considerably 
increased by the inclusion of steel fibres whereas there 
is only a marginal increase in the uniaxial tensile 
strength of the material [3]. This is because in fexure 
an increase in bending moment can be accommodated 
by a shift of the neutral axis towards the compression 
surface as the tensile zone becomes inelastic at high 
stresses. A precise interpretation of the reinforcement 
mechanism in flexure presents considerable theoreti- 
cal problems [2-5] but is, nevertheless, important 
because a majority of applications of fibre-reinforced 
cementitious materials involve flexural stresses. 
Several theoretical studies of flexural behaviour have 
been made in recent years but two of these approaches 
are considered in this paper [3, 6]. 

2.1. "Post-cracking" strength concept 
A "post-cracking" ftexural strength theory was derived 
by Hannant  [3] on the basis of a fundamental assump- 
tion that at ultimate stress the matrix is fully cracked 
and, therefore, composite strength is purely a func- 
tion of the pull-out resistance offered by the fibres 
bridging the cracks. No contribution of the matrix 
strength was, therefore, included in the composite 
flexural strength expression. Based on the generally 
recognized principles of ultimate flexural behaviour 
and the above assumptions, Hannant  [3] derived the 
following expression for the fictitious or apparent 
modulus of rupture, acu, of such composites as steel 
fibre-reinforced concrete (sfrc) 
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Figure 1 Relation between composite tensile strength and fibre 

volume for a brittle matrix reinforced with ductile fibres. 

Gcu ~ ~-Vf~ 

where vf is the volume fraction of fibres, T is average 
fibre-matrix bond strength at ultimate load, lid is the 
fibre aspect ratio. 

The apparent modulus of rupture expression was 
derived by equating the ultimate moment of resistance 
derived from the assumed stress block at ultimate load 
to the moment of resistance obtained assuming a 
classical elastic stress block at ultimate load. 

On the basis of this "post-cracking" strength con- 
cept, the following expression for the direct tensile 
strength, a~t, of composites such as sfrc was also 
derived [3] 

a~t = 2X-vfv (-/d) (2) 

The expression for flexural strength (Equation 1) is 
inadequate for sfrc mixes which are commonly in use 
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because the contribution of the matrix phase to 
strength has been neglected. This limitation can be 
clearly demonstrated if values of T are calculated using 
Equation 1 for a wide range of flexural strength data 
on sfrc. The data on flexural strength, o-cu, was 
obtained from Mangat [7] and from the present investi- 
gation, for a wide range of vf(l/d) ratios, types of  steel 
fibres and mix proportions. The fibre volume fractions 
used in these mixes ranged between 0.5% and 2.5% 
which are typical of practical sfrc. These values of 
are plotted against vf(l/d) in Fig. 2 which shows that 
the value of  z increases from a b o u t , 4 N m m  -2 at a 
vf(l/d) ratio of 2.4 to a value of about 1 3 N m m  -2 at 
a vr(I/d) ratio of  0.4. The clear trend of  • increasing 
with decreasing vf(l/d) ratio is due to the fact that the 
matrix strength component has not been included in 
the composite strength Equation 1. This leads to artifi- 
cially large values of T to compensate for the matrix 
strength contribution. In fact, the large z values 
obtained at low vf(I/d) ratios are inconceivable because 
they are well in excess of the tensile or shear strength 
of cement matrices. 

Values of  ~ were also calculated from Equation 2 
using a range of  direct tensile strength results on sfrc 
from Johnston and Coleman [8]. These T values are 
plotted against vf(l/d) in Fig. 3. A sharp increase in 
with decreasing vr(l/d) is again evident which, as will 
be confirmed later, is because of  the omission of  the 
matrix strength component in Equation 2. 

The implications of the above observations are that 
in the sfrc mixes represented above, vf ~< vent (see 
Fig. 1). As a result the composites are matrix controlled 
and simultaneous matrix cracking and composite 
failure are expected at ultimate load. The failure mode 
is due to the propagation of a single crack and there 
is no occurrence of multiple cracking. This is borne 
out by numerous observations of flexural tests on sfrc 
both in this investigation and by others [9]. 

2L6 2'8 30 Figure 2 The average interfacial bond stress (~) at ultimate 

flexural load as a function of vf(l/d). 
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Figure 3 Average interfacial bond stress (z) at ultimate 

tensile load as a function of vr(l/d). 

2.2. Mechanics of composite materials 
approach 

Using the law of mixtures as a basis, Swamy and 
Mangat [6] derived the following expression for the 
flexural strength of concrete reinforced with randomly 
oriented short steel fibres. 

a c = A a m ( l  - -  Vf) -t- 0.82Tvf(I/d) (3) 

where cr and v represent stress and volume, respec- 
tively, and suffixes c, m and f represent composite, 
matrix and fibre, respectively. 

By regression analysis of a wide range of flexural 
strength data, Swamy and Mangat [6] obtained the 
following equations: 
first crack composite flexural strength 

l 
act = 0.843am(1 - vf) + 2.93vr~ (4) 

ultimate composite flexural strength 

l 
acu = 0.97am(1 - vf) + 3.41vf~ (5) 

Although the above theory has shown very good 
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Figure 4 Typical load deflection curve for steel fibre-reinforced 
concrete in flexure. 

correlation with experimental data, the validity of 
the law of mixtures to composites in flexure can be 
questioned at a fundamental level. 

3. Theoretical analysis of flexural 
strength 

3.1. Mode of failure 
In order to derive the stress block for sfrc at ultimate 
(maximum) flexural stress (see Fig. 4), an appreciation 
of the load-deflection behaviour is important. Fig. 4 
illustrates a typical load-deflection curve in flexure. 
The curve is linear up to point A which is commonly 
defined as the first crack stress. Further loading leads 
to a non-linear load-deflection curve represented by 
portion AB. At ultimate (maximum) load, simul- 
taneous matrix cracking and composite fracture occur 
but sudden failure of the specimen is prevented 
because of the frictional resistance of fibres during 
pull-out. 

Beyond the ultimate load, the composite carries a 
decreasing load as fibres offer resistance to pull-out 
through frictional shear bond. Because the friction 
shear bond of steel fibres in cement matrices is com- 
parable to ultimate shear bond [10], the post-ultimate 
load capacity of the composites can be significant. 

3.2. Stress  b lock in f lexure 
The analysis of ultimate flexural strength is based on 
a simplified stress block shown in Fig. 5. The matrix 
tensile strength, amt, is represented by K¢m where a m is 
the modulus of rupture of plain concrete calculated 
from elastic theory and Kis an empirical constant [11]. 
ef is the average stress sustained by fibres in the tensile 
zone, which is dependent on the average ultimate 
bond stress, T. The factor e is introduced to allow for 
the shift in neutral axis towards the compression zone 
at ultimate load. 
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Figure 5 Simplified stress block for sfrc at ultimate load in flexure. 

It is recognized that Fig. 5 may not represent pre- 
cisely the ultimate stress distributions in the fibre and 
matrix phases, which are likely to be non-linear to 
some degree. However, as will be seen later, this does 
not alter the basic nature of  the flexural strength 
equations derived. The stress distribution in the com- 
pression zone of Fig. 5 is assumed linear because the 
non-linearity of  the load-deflection curve between 
points A and B in Fig. 4 is caused primarily by the 
inelasticity of the tensile zone and shifting of the 
neutral axis. The strains on the extreme compression 
face of  specimens near failure were found to be of the 
order of 500 microstrain which is a small fraction of 
the ultimate compressive strain capacity of concrete 
which is about 3500 microstrain. Consequently, con- 
crete in the compression zone can be assumed to be 
approximately elastic, resulting in linear stress distri- 
bution in Fig. 5. 

3.3. Derivation of flexural strength equation 
From Fig. 5, the moment of resistance (MR) about the 
line of  action of the compressive force, C, is 

MR = Tmlal + Tfla2 (6) 

where Tm and Tf are the tensile resistance forces 
mobilized by the matrix and fibres, respectively, and 
lal and la2 are their respective lever arms. 

Tf is dependent on the number of fibres per unit 
area, N, across a cross-section, the average bond stress 

and the average length of  fibres bridging the plane of 
the failure crack. For  a section of unit width, the area 
of fibres, At, bridging a cross-section in the tensile 
zone is given by 

d 2 
Af = Nn ~- De (7) 

where d is the fibre diameter. Hence, 

d 2 
Tf = arN~--~  De  (8) 

where af is the average tensile stress in fibres at ulti- 
mate flexural load. af is dependent on T and the mean 
fibre length bridging the failure plane, which is assumed 
to be 1/4 [2]. The average tensile force per fibre, tf, at 
ultimate flexural load is then given by the expression: 

tf = v~d / (9) 
~4 

and 

tr (10) 
o f -  (~d2/4) 

Therefore, from Equations 9 and 10 
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l 
ar = ~ ~ (11) 

The number of fibres per unit area, N, in a composite 
reinforced with randomly oriented and uniformly 
distributed fibres can be shown to be [3] 

N - pvf 
(red2/4) (12) 

where fl is the fibre orientation factor. 
Substituting from Equations 11 and 12 into Equa- 

tion 8 gives 

l 
Tf = ~ ~l flvr Do~ (13) 

From the matrix stress block in Fig. 5 

K°'m (A c - Af )  (14)  Tm - 2 

where Ac is the gross cross-sectional area of the tensile 
zone, which equals eD. 

Substituting from Equations 7 and 12 into Equa- 
tion 14 gives 

K°-m De(1 - fivr) (15) T m =  2 

From Fig. 5, the lever a r m s  Ia 1 and la 2 can be 
expressed as: 

la~ = 2 D (16) 

D 
la2 = ~ - ( 4 -  ~) (17) 

Hence substituting from Equations 13, 15, 16 and 17 
into Equation 6 gives 

6 ~ (18) 

The flexural strength of sfrc is usually calculated 
using elastic theory based on a triangular stress block 
with the neutral axis coinciding with the centroidal axis 
of the section. This is a convenient simplification 
which, in fact, does not give the true tensile strength of  
the composite in flexure and can be referred to as the 
fictitious or apparent modulus of  rupture [3]. This is 
because the increased area of the tensile stress block 
caused by the shift of neutral axis at ultimate load is 
not taken into account. Nevertheless this value of  
modulus of  rupture is of great practical importance 
and is invariably used in engineering design and for 
quality control purposes. 

An expression for the apparent modulus of  rupture 
of sfrc can be derived by equating the moment of 
resistance based on the elastic stress block to the 
moment of  resistance given by Equation 18. A trian- 
gular stress block based on elastic theory gives the 
following expression for moment of resistance 

acu D2 
MR - (19) 

6 

where aou is the modulus of rupture of  the composite. 



Equating the ultimate moment of resistance values 
given by Equations 18 and 19 gives 

acu = (2~)KO'm(1 -- /3%) + ~(4 -- ct)z/3vr I (20) 

It should be noted that any variations in assump- 
tions with respect to the assumed stress block in Fig. 5 
will not affect the basic nature of Equation 20 but will 
only alter the values of the constants. 

It has been stated [3] that for sfrc, the neutral axis 
may only be 0.8D from the tensile face at ultimate 
flexural load. Results from this investigation, which 
are presented in Fig. 6 show the relationship between 
depth of neutral axis and crack width at the tension 
face. Data for specimens reinforced with 1.7vol % 
melt extract steel fibres having an aspect ratio of 60 
are given. Neutral axis depths at small crack widths 
correspond to the maximum stress sustained by the 
specimens. Higher crack widths correspond to the 
falling branch of the load-deflection curve (Fig. 4). 
The results at the small crack widths show consider- 
able scatter and an average value for neutral axis 
depth of 0.75D is assumed. This assumption was also 
made by Hannant  [3] in his flexural analysis. Hence 
substituting the value of 0.75 for c~ in Equation 20 
gives 

l 
O'cu = 1.5Kam(1 - -  flVf) AC 2.44z/3Vfd (21) 

Equation 21 is similar to the expression derived by 
Swamy and Mangat [6] using the law of mixtures as a 
basis. This gives the modulus of rupture of the com- 
posite, ac, as given by Equation 3. A regression analy- 
sis on a wide range of experimental data simplified 
Equation 3 to Equation 5. A comparison of Equations 
5 and 21 indicates that factor 1.5K in Equation 21 
should equal 0.97 which gives a value for K of 0.65. 
The empirical constant K relates the direct tensile 
strength, amt , and the modulus of rupture, am, of 

Depth of specimens, D=1OOmm 
Mix proportions: 0"26:0,7L:1.51: 0.8~.: 0.40 
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Figure 6 The shift of  neutral axis from the tension surface of prism 
specimens tested in flexure. 

concrete matrices in the form 

O'at---~ g a m  (22) 

Values of K given in the literature [11], for different 
mix proportions, range between 0.63 and 0.83. A 
possible value of 0.65 in Equation 21 is clearly 
acceptable. 

The second term on the right-hand side of Equations 
21 and 3, the parameter Wr(I/d), is common to both 
equations. The constant 2.44fl in Equation 21, how- 
ever, does not simplify to the value of 0.82 (equation 
3) if, as in the derivation of Equation 3, the orientation 
factor/3 is assumed as 0.41. But this constant would 
equal 0.82 if the value of ~ in the analyses was assumed 
to be 0.5 and if the fibre stress distribution in the 
tensile zone in Fig. 5 was assumed as triangular. This 
implies that the law of mixtures approach adopted by 
Swamy and Mangat [6] is a special case of the general 
approach adopted in this paper. 

The term (1 - /3Vr) in Equation 21 represents the 
volume of the matrix, Vm, in the composite reinforced 
with an equivalent volume /3vr of aligned fibres. 
Swamy and Mangat [6] have omitted the term/3 when 
representing the volume of matrix in their Equation 3. 
In practical sfrc composites, however, their omission 
is not significant because maximum values of v r are 
relatively small and the errors induced in using either 
(1 - vr) or (1 - /3vf) are insignificant. For the sake 
of generality, however, Equation 21 is appropriate. 
Based on Equation 21, a regression analysis of the 
extensive range of ftexural strength data which were 
used by Swamy and Mangat [6], yield the following 
design expression 

l 
~cu = 0.97am(1 - /3%) + 3.41vr~¢ (23) 

which is theoretically more accurate than the design 
expression in Equation 5. 

4. Experimental investigation 
In most of the existing data on sfrc [3, 6, 9], the 
variations in composite strength, acu, were achieved 
primarily by adding different vr(l/d) ratios of steel 
fibres in cement matrices. In the experimental part of 
this investigation, the vr(l/d) ratio of different types of 
steel fibres used was kept practically constant. Varia- 
tions in strength, O-ou, were achieved by using different 
test ages, mix proportions of the matrix and different 
curing conditions. The validity of the flexural strength 
expressions to these data is examined in this section. 

4.1. Details of tes ts  
Two concrete mixes were used in this investigation. 
The first mix (Mix A) was of proportions by weight of 
ordinary Portland Cement (OPC):fine aggregate: 
coarse aggregate of 1 : 1.15:0.86 with a water/cement 
ratio of 0.4. The second mix (Mix B) incorporated 
pulverized fuel ash (pfa) and was of proportions by 
weight of pfa : OPC : fine aggregate : coarse aggregate 
of 0.26 : 0.74 : 1.51 : 0.84 with a water/(OPC + pfa) 
ratio of 0.4. Three types of steel fibres were used, 
namely melt extract (ME), corrosion resistant (CR) 
and low-carbon steel fibres (MS). The latter two fibres 
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T A B L E  I Details of fibres 

Mix Fibre type Fibre details 

l d l vf l 
(mm) (mm) d (%) Vr 

A Melt extract 25.0 0.51 49 3.0 147 
(ME) 

18 Low-carbon 28.2 0.48 60 2.5 147 
steel (MS) 16 
Corrosion 40.0 0.60 66 2.2 145 
resistant (CR) % 

12 
Melt extract 26.5 0.44 60 1.7 100 
(ME) ~ 10 

Low-carbon 28.2 0.48 60 1.7 I00 
steel (MS) . . ~  8 
Corrosion 40.0 0.60 66 1.7 112 ~ 6 
resistant (CR) ¢ 

2 

had hooked ends. Details of fibre dimensions and 0 
volume fractions used are given in Table I. 

Prism specimens of dimensions 100mm × 
100mm × 500mm were manufactured and these 
were exposed to different curing conditions which 
included sea-water spray cycles in the laboratory 
simulating splash zone exposure (Sh), laboratory air 
curing (LbA), laboratory water curing (LbW), and 
curing in the tidal zone at Aberdeen beach (Bh). 
Flexural tests were conducted after 150, 300 and 1200 
marine cycles of exposure for both Mixes A and B and 
in addition at 2000 cycles on specimens of Mix A only. 
The specimens were tested under four-point bending 
and an automatic plot of the load-deflection curves 
was recorded. The point of deviation from linearity of 
the load-deflection graph was taken as the first crack 
strength. 

4.2. Test results and discussion 
4.2. 1. Ultimate flexural strength 
In order to obtain an equation for the ultimate flexural 
strength, a regression analysis was carried out using 
Equation 21, between ac~/[vr(l/d)] and am(1 - -  flVr) / 
[vf(l/d)] where the orientation factor/3 was taken as 
0.41 [12]. The slope of the resulting linear relationship 
gives the value of constant 1.5K in Equation 21 and 
the intercept represents thevalue of the constant par- 
ameter (2.44~/~). The modulus of rupture values, at 
different ages, of the OPC/pfa mixes (Mix B) incor- 
porating different steel fibres yielded the following 
regression equation 

l 
Crou = 0.63~rm(1 - -  flVr) + 4.72vf ~ (24) 

with a coefficient of correlation of 0.91. A straight line 
representing the above expression, together with the 
experimental points is plotted in Fig. 7. 

The flexural strength Equation 23 which is based on 
previously available data [6] is also plotted in Fig. 7, 
and evidently does not represent the experimental 
results of the OPC/pfa mixes of sfrc in this figure. This 
is likely to be because Equation 23 was derived by 
regression analysis on a wide range of experimental 
data based predominantly on sfrc mixes made with 
OPC and without pozzolanic additives such as pfa. 

Fig. 8 represents the flexural strength results 

Mix propor fi ons:0.26:0.7#:1.51:0.84:04+0 
Fibre Curinq_~ _Symbot 

__ffype Sh LbA LbW Bh 
ME o ~ ® • 

MS * • 

CR x '7 

,/--Ocu= 0.97om(1-~)+3./,1 vf (l/d) 
., o [Equation 23] 

/ z  o 

, " " / / ~ O c u ' ~  / =0.63Om(1-fl ~), 4.72 vf (I/d) 
"" ~'~'/'o - [Equoti0n 241 

® O x ~  0 
~,, t-  ~ ~ 8 

t / g  " 
7 v 

° "  

% (1-~v~/vf (lid) 

Figure 7 Ultimate flexural strength results of  Mix B reinforced with 
steel fibres. 

of ordinary Portland cement mixes (Mix A) of this 
investigation, which were reinforced with ME, MS 
and CR fibres. In this figure, Equation 23 is valid for 
the experimental results whereas Equation 24 is un- 
representative. This must be because Equation 23 has 
been obtained for OPC-based mixes of sfrc. 

The most likely reason for the different equations 
being valid to composites with and without pfa is the 
influence of the matrix on bond strength, z. The 
inclusion of pfa in the matrix appears to affect z 
significantly. This was also observed in another investi- 
gation of the free shrinkage of sfrc where the coef- 
ficient of friction, #, at the fibre-matrix interface 
was found to be significantly different for mixes 
incorporating pfa [13, 14]. 

4.2.2. First crack flexural strength 
By making suitable assumptions with respect to stress 
distribution and position of neutral axis at first crack, 
a similar expression for first crack flexural strength, 

14 

12 

10 

{ 8  

2 

0 

Mix propor fions:1.0:1.51:0-86, 0./,0 
Fibre Curinq & Symbot 

._ty.pe Sh LbA Bh 
ME o ,~ • 

MS ,, e = 

CR x v 

/ ~Ocu=O97Crm(1-#vf}+ 3#1v f (Z/d) [Equation 23] 
: ~," 

v.~ x ,4"/,~cu:0.63O.m(1_/3~)+4.72 vf((/d)[Equation Z4] 

. / / ,"  t 
/ 

z 
z 

~m (1-/3vf)vf (,//d} 

Figure 8 Ultimate flexural strength results of  Mix A reinforced with 
steel fibres. 
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Figure 9 First crack flexural strength results of Mix B 
reinforced with steel fibres. 
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acf, can be derived for sfrc, and the values of the 
constant factors may be derived by regression analysis 
of experimental data. This has been carried out on the 
data for Mix B specimens reinforced with different 
steel fibres and gives the following relationship with a 
coefficient of correlation of 0.97 

act = 0 - 8 2 a m (  1 - -  /3Vr) + 2.70vf / (25) 

where 0% is the modulus of rupture of the matrix. A 
line representing the above expression together with 
the experimental points is plotted in Fig. 9. The first 
crack flexural strength equation derived by Swamy 
and Mangat [6] is also plotted in Fig. 9 which practi- 
cally coincides with the line representing Equation 25. 

First crack ftexural strength data for OPC mixes 
(Mix A) reinforced with ME, MS and CR fibres are 
plotted in Fig. 10. Equation 25 shows excellent corre- 
lation with the experimental results. 

4.2.3, Verif ication of  theory 
In Section 2.1 it was stated that the theoretical Equa- 
tions 1 and 2 derived by Hannant  [3] for the flexural 
and tensile strength of sfrc were unsatisfactory because 
of the exclusion of the matrix strength component in 
the composite equations. This was verified by plotting 
the T values at different vr(l/d) ratios in Figs 2 and 3, 
which showed unacceptable increases in ~ with decreas- 
ing v~(l/d). The same test is now applied to the com- 
posite strength equations derived in this paper in order 
to confirm that the matrix strength component is a 
constituent of such expressions. Using a wide range 
of flexural strength data obtained from Mangat [7], 
values of ~ have been calculated from Equation 21 
assuming Kas  0.65 and/3 as 0.41. These values o f t  are 
plotted against vf(l/d) in Fig. 2. It is evident that 
vr(l/d) has no significant effect on these z values, the 
bulk of which range between 1.8 and 3 .4Nmm 2. The 
scatter in these values is caused not by variations in 
vf(l/d) but by scatter of experimental data on flexural 
strength. 

The above band of T values is within the range 2.00 
to 3 .74Nmm -2 which was obtained from the law of 
mixtures for a wider range of mixes [15]. These values 
were obtained by substituting flexural strength infor- 
mation in the mixtures Equation 3. If, instead, the 
flexural strength Equation 21 was used, it would give 
T values ranging between 1.64 and 3.1 N m m  2. These 
values are similar to the range 1.8 to 3 .4Nmm -2 
obtained in this paper. 

The principles used in the derivation of flexural 
strength expressions in this paper can be equally 
applied to the case of direct tensile stress and result in 
the following expression 

l 
o-ct =- O'mt(1 -- //Vf) + //ZVr ~ (26) 

where ac, is the tensile strength of sfrc and amt is the 
tensile strength of the matrix. Assuming/3 = 0.41 [12] 
and using a wide range of direct tensile strength data 
obtained from Johnston and Coleman [8], values of z 
have been calculated from Equation 26. These values 

Mix proporfions:l.0:1.51:0.86:0.40 
I Fibre Curing &__._Symbot 
f y p e  Sh LbA Bh 

ME o ~ • 

MS • ~ [] 

12 

10 

8 

2 

~cf =0.a2 ~m(1-/3vf)+270 vf(l/d) [Equation 25] 

~b 

~m (~-~vf) vf (dd) 
Figure lO First crack flexural strength results of Mix A reinforced 
with steel fibres. 
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are plotted against vf(l/d) in Fig. 3. It is again clear 
that z is independent of vr(l/d) thus confirming that 
any increase in ~ with decreasing vf(I/d) is due to the 
omission of the matrix strength component in the 
composite equation. 

5. Conclusions 
At ultimate stress, the failure mechanism of sfrc in 
direct or flexural tension is essentially due to simul- 
taneous matrix cracking and composite failure. Con- 
sequently, in any expression for composite strength, 
the matrix strength component should be a constituent 
of the equation. 

The flexural strength of sfrc can be predicted from 
a composite equation of the form 

l 
O'cu ----- AO'm(1 - -  flvr) + Ovr ~l 

where constants A and B account for the shift in 
neutral axis at ultimate stress, fibre matrix interracial 
bond strength and orientation of fibres. Because of the 
difficulty in precisely determining these factors, A and 
B are best derived empirically using experimental 
data. A similar expression can be derived for the direct 
tensile strength of such composites. 

The values of A and B remain fairly constant for a 
very wide range of sfrc mixes manufactured with 
ordinary Portland cement and cured under different 
conditions. These values, however, are different for 
mixes incorporating pulverised fuel ash. 
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